Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 178: 147-159, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447811

RESUMO

Wound infection commonly causes delayed healing, especially in the setting of chronic wounds. Local release of antibiotics is considered a viable approach to treat chronic wounds. We have developed a versatile telodendrimer (TD) platform for efficient loading of charged antibiotic molecules via a combination of multivalent and synergistic charge and hydrophobic interactions. The conjugation of TD in biocompatible hydrogel allows for topical application to provide sustained antibiotic release. Notably, a drug loading capacity as high as 20 % of the drug-to-resin dry weight ratio can be achieved. The payload content (PC) and release profile of the various antibiotics can be optimized by fine-tuning TD density and valency in hydrogel based on the charge and hydrophobic features of the drug, e.g., polymyxin B (PMB), gentamycin (GM), and daptomycin (Dap), for effective infection control. We have shown that hydrogel with moderately reduced TD density demonstrates a more favorable release profile than hydrogel with higher TD density. Antibiotics loaded in TD hydrogel have comparable antimicrobial potency and reduced cytotoxicity compared to the free antibiotics due to a prolonged, controlled drug release profile. In a mouse model of skin and soft tissue infection, the subcutaneous administration of PMB-loaded TD hydrogel effectively eliminated the bacterial burden. Overall, these results suggest that engineerable TD hydrogels have great potential as a topical treatment to control infection for wound healing. STATEMENT OF SIGNIFICANCE: Wound infection causes a significant delay in the wound healing process, which results in a significant financial and resource burden to the healthcare system. PEGA-telodendrimer (TD) resin hydrogel is an innovative and versatile platform that can be fine-tuned to efficiently encapsulate different antibiotics by altering charged and hydrophobic structural moieties. Additionally, this platform is advantageous as the TD density in the resin can also be fine-tuned to provide the desired antibiotic payload release profile. Sustained antibiotics release through optimization of TD density provides a prolonged therapeutic window and reduces burst release-induced cytotoxicity compared to conventional antibiotics application. Studies in a preclinical mouse model of bacteria-induced skin and soft tissue infection demonstrated promising therapeutic efficacy as evidenced by effective infection control and prolonged antibacterial efficacy of antibiotics-loaded PEGA-TD resin. In conclusion, the PEGA-TD resin platform provides a highly customizable approach for effective antibiotics release with significant potential for topical application to treat various bacterial wound infections to promote wound healing.


Assuntos
Resinas Acrílicas , Polietilenoglicóis , Infecções dos Tecidos Moles , Infecção dos Ferimentos , Camundongos , Animais , Antibacterianos/uso terapêutico , Hidrogéis/química , Infecções dos Tecidos Moles/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico , Controle de Infecções
2.
Med Drug Discov ; 212024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390434

RESUMO

Background: Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods: A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results: CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions: CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.

3.
Nat Nanotechnol ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374413

RESUMO

Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.

4.
Macromol Rapid Commun ; 44(23): e2300322, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37533180

RESUMO

Imbalanced immune regulation leads to the abnormal wound healing process, e.g., chronic unhealing wound or hypertrophic scar formation. Thus, the attenuation of the overflowing inflammatory factors is a viable approach to maintain the homeostatic immune regulation to facilitate normal wound healing. A versatile telodendrimer (TD) nanotrap (NT) platform is developed for efficient biomolecular protein binding. The conjugation of TD NT in size-exclusive biocompatible hydrogel resin allows for topical application for cytokine scavenging. Fine-tuning the TD NT density/valency in hydrogel resin controls resin swelling, optimizes molecular diffusion, and improves cytokine capture for effective immune modulation. The hydrogel with reduced TD NT density allows for higher protein/cytokine adsorption capacity with faster kinetics, due to the reduced barrier of TD NT nano-assembly. The positively charged TD NT hydrogel exhibits superior removal of negatively charged proinflammatory cytokines from the lipopolysaccharide (LPS, a potent endotoxin) primed immune cell culture medium. The negatively charged TD NT hydrogel removes positively charged anti-inflammatory cytokines efficiently from cell culture medium. TD NT hydrogel effectively constrains the local inflammation induced by subcutaneous LPS injection in mice. These results indicate the great potential applications of the engineered TD NT hydrogel as topical immune modulatory treatments to attenuate local inflammation.


Assuntos
Hidrogéis , Lipopolissacarídeos , Animais , Camundongos , Hidrogéis/química , Lipopolissacarídeos/farmacologia , Cicatrização , Citocinas/farmacologia , Inflamação , Antibacterianos/farmacologia
5.
Shock ; 59(6): 922-929, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939682

RESUMO

ABSTRACT: Background: The kidney is the most common extrapulmonary organ injured in sepsis. The current study examines the ability of aerosolized nanochemically modified tetracycline 3 (nCMT-3), a pleiotropic anti-inflammatory agent, to attenuate acute kidney injury (AKI) caused by intratracheal LPS. Methods: C57BL/6 mice received aerosolized intratracheal nCMT-3 (1 mg/kg) or saline, followed by intratracheal LPS (2.5 mg/kg) to induce acute lung injury-induced AKI. Tissues were harvested at 24 h. The effects of nCMT-3 and LPS on AKI were assessed by plasma/tissue levels of serum urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, and renal histology. Renal matrix metalloproteinase (MMP) level/activity, cytochrome C, Bax, Bcl-2, caspase-3, p38 mitogen-activated protein kinase activation, NLRP3, and caspase-1 were also measured. Apoptotic cells in kidney were determined by TUNEL assay. Renal levels of IL-1ß and IL-6 were measured to assess inflammation. Results: Acute lung injury-induced AKI was characterized by increased plasma blood urea nitrogen, creatinine, injury biomarkers (neutrophil gelatinase-associated lipocalin, kidney injury molecule 1), and histologic evidence of renal injury. Lipopolysaccharide-treated mice demonstrated renal injury with increased levels of inflammatory cytokines (IL-1ß, IL-6), active MMP-2 and MMP-9, proapoptotic proteins (cytochrome C, Bax/Bcl-2 ratio, cleaved caspase-3), apoptotic cells, inflammasome activation (NLRP3, caspase-1), and p38 signaling. Intratracheal nCMT-3 significantly attenuated all the measured markers of renal injury, inflammation, and apoptosis. Conclusions: Pretreatment with aerosolized nCMT-3 attenuates LPS-induced AKI by inhibiting renal NLRP3 inflammasome activation, renal inflammation, and apoptosis.


Assuntos
Injúria Renal Aguda , Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 3/metabolismo , Lipocalina-2 , Creatinina , Lipopolissacarídeos/farmacologia , Citocromos c/metabolismo , Interleucina-6/metabolismo , Proteína X Associada a bcl-2/metabolismo , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/metabolismo , Apoptose , Caspase 1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tetraciclinas/farmacologia , Inflamação/metabolismo , Sepse/metabolismo
6.
Mol Pharm ; 20(4): 2138-2149, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877183

RESUMO

Systemic fungal infections are an increasingly prevalent health problem. Amphotericin B (AmB), a hydrophobic polyene antibiotic, remains the drug of choice for life-threatening invasive fungal infections. However, it has dose-limiting side effects, including nephrotoxicity. The efficacy and toxicity of AmB are directly related to its aggregation state. Here, we report the preparation of a series of telodendrimer (TD) nanocarriers with the freely engineered core structures for AmB encapsulation to fine-tune AmB aggregation status. The reduced aggregation status correlates well with the optimized antifungal activity, attenuated hemolytic properties, and reduced cytotoxicity to mammalian cells. The optimized TD nanocarrier for monomeric AmB encapsulation significantly increases the therapeutic index, reduces the in vivo toxicity, and enhances antifungal effects in mouse models with Candida albicans infection in comparison to two common clinical formulations, i.e., Fungizone and AmBisome.


Assuntos
Anfotericina B , Micoses , Camundongos , Animais , Anfotericina B/química , Antifúngicos/química , Composição de Medicamentos , Candida albicans , Mamíferos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38184374

RESUMO

Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.

8.
Shock ; 57(5): 749-758, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583915

RESUMO

BACKGROUND: Intratracheal (IT) lipopolysaccharide (LPS) causes severe acute lung injury (ALI) and systemic inflammation. CMT-3 has pleiotropic anti-inflammatory effects including matrix metalloproteinase (MMP) inhibition, attenuation of neutrophil (PMN) activation, and elastase release. CMT-3's poor water solubility limits its bioavailability when administered orally for treating ALI. We developed a nano-formulation of CMT-3 (nCMT-3) to test the hypothesis that the pleiotropic anti-inflammatory activities of IT nCMT-3 can attenuate LPS-induced ALI. METHODS: C57BL/6 mice were treated with aerosolized IT nCMT-3 or saline, then had IT LPS or saline administered 2 h later. Tissues were harvested at 24 h. The effects of LPS and nCMT-3 on ALI were assessed by lung histology, MMP level/activity (zymography), NLRP3 protein, and activated caspase-1 levels. Blood and bronchoalveolar lavage fluid (BALF) cell counts, PMN elastase, and soluble triggering receptor expressed on myelocytes-1 (sTREM-1) levels, TNF-α, IL-1ß, IL-6, IL-18, and BALF protein levels were also measured. RESULTS: LPS-induced ALI was characterized by histologic lung injury (PMN infiltration, alveolar thickening, edema, and consolidation) elevated proMMP-2, -9 levels and activity, increased NLRP-3 protein and activated caspase-1 levels in lung tissue. LPS-induced increases in plasma and BALF levels of sTREM-1, TNF-α, IL-1ß, IL-6, IL-18, PMN elastase and BALF protein levels demonstrate significant lung/systemic inflammation and capillary leak. nCMT-3 significantly ameliorated all of these LPS-induced inflammatory markers to control levels, and decreased the incidence of ALI. CONCLUSIONS: Pre-treatment with nCMT3 significantly attenuates LPS-induced lung injury/inflammation by multiple mechanisms including: MMP activation, PMN elastase, sTREM-1 release, and NLRP3 inflammasome/caspase-1 activation.


Assuntos
Lesão Pulmonar Aguda , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pneumonia , Tetraciclinas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Células Precursoras de Granulócitos/metabolismo , Células Precursoras de Granulócitos/patologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Elastase de Leucócito/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Tetraciclinas/química , Tetraciclinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Adv Ther (Weinh) ; 5(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36590645

RESUMO

Sepsis is a complex, life-threatening hyperinflammatory syndrome associated with organ failure and high mortality due to lack of effective treatment options. Here we report a core-shell hydrogel nanoparticle with the core functionalized with telodendrimer (TD) nanotrap (NT) to control hyperinflammation in sepsis. The combination of multi-valent charged and hydrophobic moieties in TD enables effective binding with biomolecules in NT. The higher crosslinking in the shell structure of nanogel excludes the abundant large serum proteins and allows for size-selectivity in scavenging the medium-sized septic molecules (10-30 kDa), e.g., lipopolysaccharides (LPS, a potent endotoxin in sepsis), thus reducing cytokine production. At the same time, the core-shell TD NT nanogel captures the over-flowing proinflammatory cytokines effectively both in vitro and in vivo from biological fluids to further control hyperinflammation. Intraperitoneal injection of core-shell TD NT nanogel effectively attenuates NF-κB activation and cytokine production in LPS-induced septic mouse models. These results indicate the potential applications of the injectable TD NT core-shell nanogel to attenuate local or systemic inflammation.

10.
Mol Pharm ; 18(6): 2349-2359, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33983742

RESUMO

Serum protein adsorption on the nanoparticle surface determines the biological identity of polymeric nanocarriers and critically impacts the in vivo stability following intravenous injection. Ultrahydrophilic surfaces are desired in delivery systems to reduce the serum protein corona formation, prolong drug pharmacokinetics, and improve the in vivo performance of nanotherapeutics. Zwitterionic polymers have been explored as alternative stealth materials for biomedical applications. In this study, we employed facial solid-phase peptide chemistry (SPPC) to synthesize multifunctional zwitterionic amphiphiles for application as a drug delivery vehicle. SPPC facilitates synthesis and purification of the well-defined dendritic amphiphiles, yielding high-purity and precise architecture. Zwitterionic glycerylphosphorylcholine (GPC) was selected as a surface moiety for the construction of a ultrahydrophilic dendron, which was coupled on solid phase to a hydrophobic dendron using multiple rhein (Rh) molecules as drug-binding moieties (DBMs) for doxorubicin (DOX) loading via pi-pi stacking and hydrogen bonding. The resulting zwitterionic amphiphilic Janus dendrimer (denoted as GPC8-Rh4) showed improved stabilities and sustained drug release compared to the analogue with poly(ethylene glycol) (PEG) surface (PEG5k-Rh4). In vivo studies in xenograft mouse tumor models demonstrated that the DOX-GPC8-Rh4 nanoformulation significantly improved anticancer effects compared to DOX-PEG5k-Rh4, owing to the improved in vivo pharmacokinetics and increased tumor accumulation.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Dendrímeros/síntese química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Glicerilfosforilcolina/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Life Sci ; 278: 119614, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022200

RESUMO

AIMS: Sodium butyrate (SB) is a major product of gut microbiota with signaling activity in the human body. It has become a dietary supplement in the treatment of intestinal disorders. However, the toxic effect of overdosed SB and treatment strategy remain unknown. The two issues are addressed in current study. MATERIALS AND METHODS: SB (0.3-2.5 g/kg) was administrated through a single peritoneal injection in mice. The core body temperature and mitochondrial function in the brown adipose tissue and brain were monitored. Pharmacodynamics, targeted metabolomics, electron microscope, oxygen consumption rate and gene knockdown were employed to dissect the mechanism for the toxic effect. KEY FINDINGS: The temperature was reduced by SB (1.2-2.5 g/kg) in a dose-dependent manner in mice for 2-4 h. In the brain, the effect was associated with SB elevation and neurotransmitter reduction. Metabolites changes were seen in the glycolysis, TCA cycle and pentose phosphate pathways. Adenine nucleotide translocase (ANT) was activated by butyrate for proton transportation leading to a transient potential collapse through proton leak. The SB activity was attenuated by ANT inhibition from gene knockdown or pharmacological blocker. ROS was elevated by SB for the increased ANT activity in proton leak in Neuro-2a. SIGNIFICANCE: Excessive SB generated an immediate and reversible toxic effect for inhibition of body temperature through transient mitochondrial dysfunction in the brain. The mechanism was quick activation of ANT proteins for potential collapse in mitochondria. ROS may be a factor in the ANT activation by SB.


Assuntos
Ácido Butírico/farmacologia , Antagonistas dos Receptores Histamínicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Temperatura Corporal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Ácido Butírico/administração & dosagem , Ácido Butírico/efeitos adversos , Células Cultivadas , Relação Dose-Resposta a Droga , Antagonistas dos Receptores Histamínicos/administração & dosagem , Antagonistas dos Receptores Histamínicos/efeitos adversos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/metabolismo , Prótons
12.
Biomed Mater ; 16(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33540386

RESUMO

The past decades have witnessed an exponential growth in research of cancer nanomedicine, which has evolved into an interdisciplinary field involving chemistry, physics, biology, and pharmacology, pathophysiology, immunology and clinical science in cancer research and treatment. The application of nanoparticles in drug delivery increases the solubility and decreases the toxicity of free drug molecules. The unique feature of cancer pathophysiology, e.g. leaky blood vessel, presents a unique opportunity for nanocarriers to deliver therapeutics selectively to tumor sites based on size selectivity. However, the clinical translation of nanomedicine is mostly limited to the classical liposomal formulations and PEGylation of therapeutics. Numbers of reasons hinder the clinical translation of the novel nanoparticles developed in the last decades for drug delivery. Comprehensive understanding of the properties of nanocarriers and their interactions with the physiological and pathological interfaces is critical to design effective nanoformulations. In addition, understanding the general principles and concerns in pharmaceutical industries and clinical practice for nanotherapeutic development is essential to develop a translatable nanoformulations via rational nanocarrier designs. In this account, we will review the relationship between the physiochemical properties of nanocarriers and biodistribution, and interactions with biological and immunological systems for effective drug delivery and cancer treatments. Further, we review the strategies for rational design of nanocarriers via structure-based approach and bio-mimicking systems to facilitate the clinical translation in enhancing cancer treatment via both chemotherapy and immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Distribuição Tecidual
13.
Acta Trop ; 214: 105781, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33264632

RESUMO

Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. Inhibition of the HSCs activity is an ideal strategy in the treatment of fibrosis, but there is no drug yet for this strategy. Artesunate (ART) has been shown to protect liver from fibrosis through inhibition of HSCs activity. However, the mechanism of ART activity remains to be fully uncovered. In this study, we tested ART in a mouse model of hepatic fibrosis established in the schistosomiasis-infected mice. The mechanism of ART action was investigated in the HSC cell line LX-2. ART significantly inhibited hepatic fibrosis. In LX-2 cells, ART efficiently inhibited the cell activity in proliferation and mRNA expression of fibrosis marker genes including Col1a1 and Col3a1. An impact of ART on mitochondria was observed for suppression of enzymes in the citric acid cycle (TCA), such as citrate synthase (CS), isocitrate dehydrogenase (IDH2), and alpha ketoglutarate dehydrogenase (OGDH) in a dose-dependent manner. ART decreased the mitochondrial oxygen consumption rate (OCR) and the protein levels of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in HSCs. All of these alterations were observed with an increase in HSC apoptosis. This study suggests that ART may alleviate liver fibrosis by downregulation of HSC activity through suppression of NDUFB8 and UQCRC2 in mitochondria. This study provides a new insight into the mechanism of the ART activity in the inhibition of schistosomiasis-induced liver fibrosis.


Assuntos
Artesunato/uso terapêutico , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/uso terapêutico , Complexo III da Cadeia de Transporte de Elétrons/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Camundongos , Mitocôndrias/metabolismo , Esquistossomose/patologia
14.
Front Genet ; 11: 541944, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343615

RESUMO

Accumulating evidence indicates that heat shock protein 90 (HSP90) plays essential roles in modulation of phenotypic plasticity in vertebrate development, however, the roles of HSP90 in modulation of cold tolerance capacity in fish are still unclear. In the present study, we showed that transient inhibition of embryonic HSP90 function by a chemical inhibitor or low conductivity stress promoted variation of cold tolerance capacity in adult zebrafish. Further work showed that embryonic HSP90 inhibition enhanced cold tolerance in adult zebrafish could be transmitted to their offspring. RNA-seq data showed that embryonic HSP90 inhibition enhanced cold tolerance involves variation of gene expression related to proteasome, lysosome, autophagy, and ribosome. Experiments with zebrafish ZF4 cells showed that two differentially expressed genes atg9b and psmd12 were up-regulated by radicicol treatment and provided protective roles for cells under cold stress, indicating that up-regulation of autophagy and proteasome function contributes to enhanced cold tolerance. The present work sheds a light on the roles of HSP90 in regulation of phenotypic plasticity associated with thermal adaptation in fish.

15.
Nat Commun ; 11(1): 3384, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636379

RESUMO

Targeting single mediators has failed to reduce the mortality of sepsis. We developed a telodendrimer (TD) nanotrap (NT) to capture various biomolecules via multivalent, hybrid and synergistic interactions. Here, we report that the immobilization of TD-NTs in size-exclusive hydrogel resins simultaneously adsorbs septic molecules, e.g. lipopolysaccharides (LPS), cytokines and damage- or pathogen-associated molecular patterns (DAMPs/PAMPs) from blood with high efficiency (92-99%). Distinct surface charges displayed on the majority of pro-inflammatory cytokines (negative) and anti-inflammatory cytokines (positive) allow for the selective capture via TD NTs with different charge moieties. The efficacy of NT therapies in murine sepsis is both time-dependent and charge-dependent. The combination of the optimized NT therapy with a moderate antibiotic treatment results in a 100% survival in severe septic mice by controlling both infection and hyperinflammation, whereas survival are only 50-60% with the individual therapies. Cytokine analysis, inflammatory gene activation and tissue histopathology strongly support the survival benefits of treatments.


Assuntos
Dendrímeros/química , Inflamação/terapia , Nanopartículas/química , Sepse/terapia , Adsorção , Animais , Antibacterianos/uso terapêutico , Citocinas/metabolismo , Feminino , Humanos , Hidrogéis , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Moléculas com Motivos Associados a Patógenos , Células RAW 264.7
16.
Biomacromolecules ; 21(6): 2132-2146, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32233461

RESUMO

This study describes a unique "quasi-living" block copolymerization method based on an initiation by a single enzyme. We use this term to describe a process where a preformed polymer chain can be reactivated to continue propagating with a second or third comonomer without addition of new catalyst. The presented strategy involves a laccase (oxidoreductase) mediated initial polymerization of 4-hydroxyphenylacetic acid to a homopolymer containing phenolic terminal units, which in turn can be easily reactivated by the same enzyme in the same reaction vessel to continue propagation with a second monomer (tyramine). Increased copolymer yield (up to 26.0%) and polymer molecular mass (up to Mw = 116 000 Da) are achieved through the addition of previously developed micellar and hydrogel enzyme complexing agents. The produced poly(tyramine)-b-poly(4-hydroxyphenylacetic acid)-b-poly(tyramine) is water-soluble and able to self-assemble in aqueous solution. Both tyramine blocks were successfully modified with ibuprofen moieties (up to 24.6% w/w load) as an example for potential polymer drug conjugation. The copolymerization could be further extended with addition of a third (fluorescent) comonomer in the same reaction vessel to yield a fluorescent pentablock copolymer. The successful modifications and advantageous solution behavior of the produced copolymers demonstrate their viability as versatile drug delivery and/or bioimaging agents, as confirmed by cytotoxicity and cellular uptake studies.


Assuntos
Micelas , Polímeros , Sistemas de Liberação de Medicamentos , Hidrogéis , Polimerização
17.
Acta Trop ; 206: 105449, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32194067

RESUMO

Lipoic acid (LA) has been shown to possess protective effects against liver fibrosis mainly by induction of apoptosis of activated hepatic stellate cells, but the mechanism of LA activity in liver fibrosis has yet to be completely explained. LA occurs naturally in mitochondria as a coenzyme. In this study, we used mice with schistosomiasis-induced liver fibrosis and mouse hepatocarcinoma cell line 1C1C7 as models to investigate the mitochondrial mechanism of LA treatment for liver fibrosis. Western blot, real-time PCR and oxygen consumption rate (OCR) test were used. In the livers of mice with liver fibrosis, the mRNA levels of LA synthetic pathway enzymes, including MCAT, OXSM, MECR, and LIAS, were significantly reduced. Livers of mice with liver fibrosis showed degenerative signs, such as mitochondrial edema, a reduced mitochondrial crest and matrix density, or vacuolation; the activities of mitochondrial complexes I, II, IV, and V were also decreased in these livers. The expression of phosphorylation Drp1 (p-Drp1) was decreased in the livers of mice with liver fibrosis, indicating increased mitochondrial fission activity, whereas OPA1 and MFN1 expression was reduced, denoting decreased activity of mitochondrial fusion. To understand the mitochondrial mechanism of LA treatment for liver fibrosis, p-Drp1, OPA1, and MFN1 expression were detected at the protein level in mouse hepatocarcinoma cell line 1C1C7 stimulated by LA. OPA1 and MFN1 were not significantly altered, but p-Drp1 was significantly increased. The results suggest that LA may alleviate liver fibrosis through upregulating p-Drp1. This study provides a new insight into the mechanism of the protective effect of LA against schistosomiasis-induced liver fibrosis, which demonstrates that LA is required for the maintenance of mitochondrial function by upregulating p-Drp1 expression to inhibit mitochondrial fission.


Assuntos
Dinaminas/metabolismo , Cirrose Hepática/tratamento farmacológico , Esquistossomose/complicações , Ácido Tióctico/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/efeitos dos fármacos , Fosforilação , Regulação para Cima
18.
PLoS One ; 15(1): e0226905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923196

RESUMO

MicroRNAs (miRNAs) play vital roles in various biological processes under multiple stress conditions by leading to mRNA cleavage or translational repression. However, the detailed roles of miRNAs in cold acclimation in fish are still unclear. In the present study, high-throughput sequencing was performed to identify miRNAs from 6 small RNA libraries from the zebrafish embryonic fibroblast ZF4 cells under control (28°C, 30 days) and cold-acclimation (18°C, 30 days) conditions. A total of 414 miRNAs, 349 known and 65 novel, were identified. Among those miRNAs, 24 (19 known and 5 novel) were up-regulated, and 23 (9 known and 14 novel) were down-regulated in cold acclimated cells. The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses indicated that the target genes of known differentially expressed miRNAs (DE-miRNA) are involved in cold acclimation by regulation of phosphorylation, cell junction, intracellular signal transduction, ECM-receptor interaction and so on. Moreover, both miR-100-3p inhibitor and miR-16b mimics could protect ZF4 cells under cold stress, indicating the involvement of miRNA in cold acclimation. Further study showed that miR-100-3p and miR-16b could regulate inversely the expression of their target gene (atad5a, cyp2ae1, lamp1, rilp, atxn7, tnika, btbd9), and that overexpression of miR-100-3p disturbed the early embryonic development of zebrafish. In summary, the present data show that miRNAs are closely involved in cold acclimation in zebrafish ZF4 cells and provide information for further understanding of the roles of miRNAs in cold acclimation in fish.


Assuntos
Aclimatação/genética , Temperatura Baixa , MicroRNAs/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA
19.
ACS Appl Bio Mater ; 3(8): 4832-4846, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34136761

RESUMO

Methotrexate (MTX) is broadly applied in the clinic for the treatments of cancers and autoimmune diseases. Targeted delivery of MTX is attractive to improve its efficacy and reduce off-target toxicity. However, MTX encapsulation in nanoparticle is challenging due to its high water solubility. We rationally designed a well-defined telodendrimer (TD) nanocarrier based on MTX structure to sequester it in nanoparticles. Riboflavin (Rf) and positive charges groups were precisely conjugated on TD to form multivalent hydrogen bonds, π-π stacking and electrostatic interactions with MTX. A reverse micelle approach was developed to preset MTX and TD interactions in the core of micelles, which ensures the effective MTX loading upon dispersion into aqueous solution. As results, MTX loading capacity reaches over 20% (w/w) in the optimized nanocarrier with the particle size of 20-30 nm. The nanoformulations sustain the release of MTX in a controlled manner and exhibit excellent hemocompatibility. The in vitro cellular uptake of MTX was significantly improved by the nanoformulations. The potency of MTX nanoformulations is comparable to the free MTX in cytotoxicity. A psoriasis-like skin inflammation model was induced in mouse by imiquimod (IMQ) stimulation. MTX nanoformulations improved the psoriasis targeting and exhibited a superior long-lasting efficacy in reducing skin inflammation compared with the free MTX in psoriasis treatment.

20.
Acta Pharm Sin B ; 9(4): 758-768, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31384536

RESUMO

Sennoside A (SA) is a bioactive component of Chinese herbal medicines with an activity of irritant laxative, which is often used in the treatment of constipation and obesity. However, its activity remains unknown in the regulation of insulin sensitivity. In this study, the impact of SA on insulin sensitivity was tested in high fat diet (HFD)-induced obese mice through dietary supplementation. At a dosage of 30 mg/kg/day, SA improved insulin sensitivity in the mice after 8-week treatment as indicated by HOMA-IR (homeostatic model assessment for insulin resistance) and glucose tolerance test (GTT). SA restored plasma level of glucagon-like peptide 1 (GLP1) by 90% and mRNA expression of Glp1 by 80% in the large intestine of HFD mice. In the mechanism, SA restored the gut microbiota profile, short chain fatty acids (SCFAs), and mucosal structure in the colon. A mitochondrial stress was observed in the enterocytes of HFD mice with ATP elevation, structural damage, and complex dysfunction. The mitochondrial response was induced in enterocytes by the dietary fat as the same responses were induced by palmitic acid in the cell culture. The mitochondrial response was inhibited in HFD mice by SA treatment. These data suggest that SA may restore the function of microbiota-GLP1 axis to improve glucose metabolism in the obese mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...